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Abstract—Delay Tolerant Networks (DTNs) are characterized
by nondeterministic mobility and connectivity. Message routing
in DTNs usually employs a multi-copy forwarding scheme. To
avoid the cost associated with flooding, much effort has been
focused on opportunistic forwarding, which aims to reduce the
cost of forwarding while retaining high routing performance
by forwarding messages only to nodes that have high delivery
probabilities. This paper presents two multicopy forwarding
protocols, called optimal opportunistic forwarding (OOF) and
OOF-, which maximize the expected delivery rate and mini-
mize the expected delay, respectively, while requiring that the
number of forwardings per message does not exceed a certain
threshold. Our contributions in this paper are summarized as
follows: We apply the optimal stopping rule in the multi-copy
opportunistic forwarding protocol. Specifically, we propose two
optimal opportunistic forwarding metrics to maximize delivery
probability and minimize delay, respectively, with a fixed number
of copies and within a given time-to-live. We implement and
evaluate OOF and OOF- as well as several other representative
forwarding protocols, i.e., Epidemic, Spray-and-wait, MaxProp∗,
and Delegation. We perform trace-driven simulations using both
real and synthetic traces. Simulation results show that, in the
traces where nodes have regular inter-meeting times, the delivery
rates of OOF and OOF- can be 30% greater than the compared
routing protocols.

Keywords: Delay Tolerant Networks, Optimal Stopping Rule,
Routing, Simulation.

I. INTRODUCTION

A Delay Tolerant Network (DTN) [1] is a sparse mobile
network, where a contemporary source-destination path may
not exist between a pair of source-destination nodes, and
messages are routed in a store-carry-forward routing paradigm.
Due to uncertainty in node mobility, DTN routing algorithms
usually spawn and keep multiple copies of the same message
in different nodes. The message is delivered if one of these
nodes encounters the destination.

The most expensive routing protocol, Epidemic [2], for-
wards copies of a message to any possible node and guarantees
a maximized delivery rate. Effectively flooding the network
with every message, Epidemic is impractical in large networks.
Recently, much effort has been focused on opportunistic
forwarding, which tries to reduce the number of copies of each
message while retaining a high routing performance, i.e., a
high delivery rate and a low delay. Since only a small fraction
of the nodes can obtain the copies of a message to save energy,
it is desired that these copies are forwarded by the nodes which
have higher delivery probabilities than the other nodes.

In this paper, we improve the message forwarding algorithm
in [3], in the calculation of its delivery probability, and name
it the optimal opportunistic forwarding (OOF) protocol. In the
OOF protocol, the optimal forwarding metrics and the optimal
forwarding rules are defined. By optimality, we mean that, with
a limited number of forwardings (or number of copies) per
message, OOF maximizes the expected delivery probability
based on a particular knowledge about the network, i.e., the
pair-wise inter-meeting times between the nodes.

We further propose a simplified forwarding protocol, named
OOF-, which minimizes the expected delay instead of maxi-
mizing the delivery rate, as in OOF. OOF- has a significantly
smaller computation and storage requirement than OOF, while
its routing performance approximates OOF.

In our network model, we assume that the long-term mean
inter-meeting times between nodes can be estimated from
the contact history of the nodes. Ideally, each node has
complete routing information of the mean inter-meeting times
between all of the pairs of nodes in the network. We will
relax the second assumption and allow the protocol to work
with incomplete routing information. Our optimal forwarding
metric differs from the existing ones in two important ways:
• It is a comprehensive metric which reflects not only

the direct (1-hop) expected delivery probability of a
message copy or the expected delivery probability of it
along a single multi-hop path, but also the joint expected
delivery probability of multiple copies of a message being
forwarded along multiple paths.

• It is also a dynamic metric, which reflects the state of the
message. For example, in a hop-count-limited forwarding
scheme, our optimal forwarding metric is a function of
two important states of the message copy: remaining hop-
count and residual time-to-live (Section III).

The basic idea is to model each forwarding as an optimal
stopping rule problem, in which a forwarding time is deliber-
ately chosen in order to maximize the joint expected delivery
probability (or minimize the joint expected delay) of the copies
in the forwarding node and receiving node of the copy at each
forwarding.

We perform simulations using four Cambridge Haggle
traces [4], the National Singapore University (NUS) student
trace [5], and the UMassDieselNet [6] trace. We evaluate
the routing performance of OOF and OOF- against several
representative DTN routing protocols: Epidemic [2], Spray-
and-wait [7], MaxProp [8], and Delegation [9], in terms of
delivery rate and forwarding number (cost). Simulation results
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Fig. 1. An illustration of hop-count-limited opportunistic forwarding.

in the Cambridge Haggle traces show that, when nodes have
regular inter-meeting times, the delivery rates of OOF and
OOF- can be 30% greater than the compared routing protocols.
In the simulation results using the UMassDieselNet trace,
where regularity in mobility is more observable, OOF and
OOF- show even better improvement.

II. PRELIMINARIES AND OVERVIEW

Our design of the OOF and OOF- protocols is developed on
a hop-count-limited opportunistic forwarding scheme, which
we will show next. Then, we will briefly present OOF and
OOF- together with some representative forwarding protocols.

A. Hop-count-limited Forwarding

In a hop-count-limited opportunistic forwarding protocol,
each message maintains a value, called remaining hop-count,
which indicates the maximum amount of hops that the message
can be forwarded over. When a message with a remaining hop-
count K is forwarded from one node to another, the remaining
hop-count of both copies in the two nodes becomes K − 1.
When K = 0, the message cannot be forwarded to any node
except the destination. That is, if the initial hop-count of a
message is H , then the maximum number of forwardings
for the message is 2H , including the one delivered to the
destination. In Figure 1, a message is created with H = 3 in
node A, and a tree of message forwarding history is shown.

An advantage of this forwarding scheme is that it has
a constant per message forwarding cost (assuming that the
forwarding cost is the major cost in the whole communication
process), which is necessary to achieve ultimate scalability:
with a constant per node message rate, the per node forwarding
overhead is kept constant as the network size increases.

B. Motivation and Overview

In most opportunistic forwarding protocols, each node is
associated with a forwarding metric for each destination,
which signifies the quality of the node as a forwarder. Existing
forwarding metrics are usually: (1) direct (1-hop) metrics
between the nodes and the destination, such as encounter
frequency [10] and the time elapsed since the last encounter
[11], [12], [13], [14], or (2) the expected forwarding metric
along the expected forwarding path, such as expected cost [8]
and expected delay [15]. When node i meets node j, node i
forwards a message to node j depending on whether or not
the direct forwarding quality of i is better than j.

We found two drawbacks in such strategies. The first
drawback is that a forwarding decision based on comparing
the direct or multi-hop forwarding qualities of nodes i and j
cannot guarantee good forwarding for the following reasons.
(1) The forwarding quality of j being better than i does not
necessarily mean that j is a good forwarder. (2) Even though
the quality of j is high, i might encounter better nodes in
the near future. (3) Similarly, even though the quality of j is
lower than i, j might still be the best forwarder that i could
encounter in the future.

The second drawback is that the forwarding quality of
a node is regarded as a constant. However, the forwarding
quality of a node may change significantly at different stages.
For example, in hop-count-limited forwarding, two important
states of the copy are: remaining hop-count and residual time-
to-live. Remaining hop-count is an important factor: a node
can be a bad 1-hop forwarder for having a large mean inter-
meeting time with the destination, but it can still be an excel-
lent 2-hop forwarder if it has a node that it frequently contacts,
which is also a node that frequently contacts the destination.
On the other hand, residual time-to-live is important because
it affects a node’s direct delivery probability, as well as its
chance of contacting high quality intermediate nodes.

To rectify these drawbacks, we use a comprehensive for-
warding metric, which reflects: (1) not the relative forwarding
quality between two nodes (node i and the next node j that
would hold custody of a new copy of the message), but the
relative forwarding qualities among all possible next nodes j,
and (2) not the quality (1-hop or multi-hop delivery probability
or delay) of a particular message copy, but the joint delivery
probability or delay, of all copies when multiple copies of the
message can be forwarded along multiple paths.

We define a delivery probability Pi,d,K,Tr
for each copy

in i and each destination d. This metric is comprehensive
because it represents the joint probability of all descendant
copies, and it is also dynamic since it is a function of the
remaining hop-count K and residual time-to-live Tr. With
Pi,d,K,Tr

, our optimal forwarding rule is presented as follows:
we logically regard a forwarding from a node i to another node
j as replacing a message copy with two new copies in the two
nodes, respectively. Whether i should forward the copy to j
depends on whether replacing the copy in i with two logically
new copies increases the joint delivery probability: the copy
is forwarded only if the joint probability of Pi,d,K−1,Tr−1
and Pj,d,K−1,Tr−1 (in case of forwarding) is greater than the
probability Pi,d,K,Tr−1 (in case of no forwarding). Details on
our optimal forwarding rule will be discussed in Section III.

It is challenging to calculate the accurate delivery proba-
bility Pi,d,K,Tr

for each K and Tr (Section III-E). We first
assume that all nodes have full routing information, which is
the mean inter-meeting times between all of the pairs of nodes.
We calculate Pi,d,K,Tr using backward induction, a solution
to the optimal stopping rule problem we modeled.

To reduce the computation and storage requirement, we
propose another forwarding metric, called expected delay
Di,d,K , which is also comprehensive but reduces the time di-
mension in the forwarding metric of OOF. The corresponding
forwarding protocol is called OOF-. Although without a sense
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of timing, OOF- approximates OOF in most situations in terms
of delivery rate.

C. Protocols in Comparison

We compare OOF and OOF- against several opportunistic
forwarding protocols. While OOF and OOF- have well-defined
utilities to maximize in each forwarding (the joint expected
delivery probability or the joint expected delay of all copies
of each message), other algorithms use either heuristic for-
warding rules or blind forwarding.

Epidemic [2]. A node sends a copy of the message to every
node it encounters that does not have a copy already until its
copy of the message times out.

Spray-and-wait [7]. This protocol differs from Epidemic
in that it controls the number of copies of each message in
the network to be smaller than L.

MaxProp∗. We use a variation MaxProp∗, which differs
from MaxProp [8] in that (1) it incorporates the hop-count-
limited forwarding protocol to control forwarding overhead in
order to make fair comparison, and (2) it assumes that each
node can carry an infinite number of messages. Note that the
first modification will effect the performance negatively.

Delegation [9]. Delegation forwarding may use a wide
range of forwarding metrics (qualities). We use the mean
inter-meeting time Ik,d of node k with destination d as the
forwarding quality of a node k, and node j has a higher
forwarding quality than node i if Ij,d < Ii,d.

D. The Optimal Stopping Rule Problem

Let us briefly review the optimal stopping rule problem
[16] with an example. In a stopping rule problem, we may
observe a sequence X1, X2, . . . for as long as we wish, where
X1, X2, . . . are random variables whose joint distribution is
assumed to be known. For each stage t = 1, 2, . . . after ob-
serving X1, X2, . . . , Xt, we may stop and receive the known
reward yt, or we may continue and observe Xt+1. In the latter
case, the bit Xt on day t will not be valid anymore on day
t+ 1. The optimal stopping rule is to stop at some stage t to
maximize the expected reward.

A stopping rule problem has a finite horizon if there is a
known upper bound T on the number of stages at which one
may stop. If stopping is required after observing X1, . . . , XT ,
we say the problem has a horizon of T . In principle, such
problems may be solved by the method of backward induction.
Since we must stop at stage T , we first find the optimal rule at
stage T −1. Then, knowing the optimal reward at stage T −1,
we find the optimal rule at stage T − 2, and so on, back to
the initial stage (stage 0). Let V (T )

t (1 ≤ t ≤ T ) represent the
maximum expected reward one can obtain, starting from stage
t. We define V

(T )
T = yT and then inductively for t = T − 1,

go backwards to t = 0:

V
(T )
t = E(max

{
yt, V

(T )
t+1

}
).

The meaning of the above equation is that, at stage t, we
compare the reward for stopping, namely yt, with the best
reward V

(T )
t+1 that we expect to be able to get by continuing and

using the optimal rule for stages t+1 through T . The optimal
reward is therefore the maximum of these two quantities, and
it is optimal to stop at the earliest t when yt ≥ V

(T )
t+1 .

III. OPTIMAL OPPORTUNISTIC FORWARDING (OOF)
In this section, we apply the optimal stopping rule to derive

the delivery probability of each message and the optimal
forwarding rule in OOF.

A. Assumptions

Each message has a source and a destination and is given
a time-to-live at its creation time. A message is deleted only
when it expires. Different copies of the same message are
forwarded independently without any knowledge of the status
of the other copies.

Like other opportunistic forwarding protocols that make
use of historical contact information, it is desired that node
mobility exhibits long-term regularities, such that some pairs
of nodes consistently meet more frequently than other pairs
over time. Networks falling into this category include most
natural or human-related mobile networks.

Firstly, we assume that each node knows the full routing
information: the mean inter-meeting times Ii,j between all
pairs of nodes {i, j}. This can be relaxed in practice.

In the calculation of the delivery probability in OOF and
the expected delay in OOF-, we assume that the delivery
probabilities (or the expected delays) are independent and
that the inter-meeting times are exponentially distributed.
However, we will not restrict the proposed protocols to these
assumptions in our simulations.

B. Discrete Residual Time-to-live

To model our optimal forwarding problem as an optimal
stopping rule problem, we need to use a discrete residual time-
to-live Tr with a certain fixed time-slot size U . Let Tmax be the
maximum possible discrete time-to-live of any message, and
the range of Tr is between 0 and Tmax. Our forwarding metric
(delivery probability) is a function of Tr, and it is calculated
using an inductive method. The amount of computation for
our forwarding metric is inversely proportional to the length
of U , but its accuracy normally decreases as U increases. In
the rest of the paper, we use Tr to denote a residual time-
to-live or a particular time-slot at Tr interchangeably without
causing confusion.

In each time-slot Tr, a node can either meet or not meet
with another node. A node has the probability to meet several
other nodes during the same time-slot, and we simply assume
that all meetings start at the beginning of some time-slot. This
assumption holds if we (1) truncate all meeting durations so
that their starting times are aligned in the beginning of their
respective time-slots; (2) prolong all meeting durations to the
end of their respective time-slots; (3) divide long meeting
durations into individual time-slots. The meeting probability
of two nodes in any time-slot of length U is estimated under
the assumption of exponential inter-meeting time [7], [12] by:

Mi,j = 1− exp(− U

Ii,j
).
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TABLE I
FORWARDING OPTIONS.

Tr Pi,d,K,Tr

Tr − 1 Not Forward Forward (becomes K − 1)
Pi,d,K,Tr−1 Pi,d,K−1,Tr−1, Pj,d,K−1,Tr−1

The calculation of Mi,j may not rely on the assumption of
exponential inter-meeting times. Using more realistic estima-
tions, such as [17], for a network in question is expected to
result in a better routing performance.

C. 1-hop Delivery Probability

The 1-hop delivery probability of a message copy is the
probability that the hosting node meets the destination directly
within its time-to-live. It is only a function of residual time-
to-live. We estimate the 1-hop delivery probability, assuming
again an exponential inter-meeting time, by:

Pi,d,0,Tr
= 1− exp(−Tr × U

Ii,d
), (1)

where 0 means that the remaining hop-count is 0, Tr × U
is the residual time-to-live of the message (Tr is the number
slots of residual time-to-live before the message expires, with
the length of the slots being U ) and Ii,d is the mean inter-
meeting time between node i and the destination d. Again,
the calculation of Pi,d,0,Tr may use an other method, such
as [17], without the assumption of exponential inter-meeting
times.

D. K-hop Delivery Probability and Forwarding Rule

Our optimal delivery probability and optimal forwarding
rule are inter-dependent: (1) the optimal forwarding rule
uses the optimal delivery probability in making forwarding
decisions, and (2) the optimal delivery probability is calculated
assuming that the optimal forwarding rule is used. The optimal
delivery probability of a copy in node i, heading for destination
d, with a remaining hop-count K (K > 0) and with a residual
time-to-live Tr, is denoted by Pi,d,K,Tr

.
We will present our optimal forwarding rule first. When

a copy, whose remaining hop-count is K, is in node i, and
node i meets node j at time-slot Tr, the decision on whether
to forward depends on whether replacing the copy in i with
two new copies in i and j, respectively, will increase the joint
delivery probability. As shown in Table I, if the message is
not forwarded in time-slot Tr, then in the next time-slot, we
have the copy with the same remaining hop-count K in node
i, and the copy’s delivery probability becomes Pi,d,K,Tr−1.
On the other hand, if the message is forwarded in time-
slot Tr, then in the next time-slot, we have two new copies
with remaining hop-count K − 1 in both i and j, whose
delivery probabilities are Pi,d,K−1,Tr−1 and Pj,d,K−1,Tr−1,
respectively. To maximize the delivery probability, we use the
optimal forwarding rule which forwards the message only if
the joint delivery probability of the two copies (in the case of
forwarding) is greater than the single copy (in the case of no
forwarding), or:

1− (1−Pi,d,K−1,Tr−1)× (1−Pj,d,K−1,Tr−1) > Pi,d,K,Tr−1.

For simplicity, in the above discussion, we assumed that
in a sparse DTN, two consecutive forwardings of the same
message (i.e., from i to j and then from j to another node)
cannot occur in the same time-slot. Also, we only considered
uni-cast forwarding. When connected with several nodes at the
same time-slot, we forward the copy to node j, which has the
largest Pj,d,K−1,Tr−1.

The optimal delivery probability Pi,d,K,Tr
depends on the

optimal forwarding rule and the meeting probabilities Mi,j of
i with each node j in time-slot Tr whose delivery probability
Pj,d,K−1,Tr−1 satisfies the forwarding criteria. We will calcu-
late Pi,d,K,Tr

in the next subsection by modeling a forwarding
as an optimal stopping rule problem.

Note that our algorithm allows messages with different
initial time-to-lives and hop-counts. Tmax is the maximum
initial time-to-live of all messages, and H is the maximum
initial hop-count. For a message, whether it is a newly created,
original copy or it is a received copy, our algorithm simply
looks up the table for the Pi,d,K,Tr

s needed. A message is
deleted only when it expires, i.e., when Tr < 0.

E. OOF as an Optimal Stopping Rule Problem
We model each forwarding as an optimal stopping rule

problem as follows: we consider only the next forwarding
of a message in node i with remaining hop-count K. At the
time of forwarding, the copy is logically regarded as being
replaced by two new copies, both of which have a K − 1
remaining hop-count. A candidate copy receiver j comes in at
each time-slot Tr with probability Mi,j , where Tr also denotes
the residual time-to-live of the message. Upon meeting with j,
i can either forward the copy to j, or not. Since we assume no
consecutive forwardings of the same message (i.e., from i to j
and then from j to another node) in the same time-slot, we can
calculate the resulting joint delivery probability based solely
on the delivery probabilities in the next time-slot, Tr − 1.

A node may meet several other nodes in the same
time-slot. Forwarding the copy to the node with the highest
delivery probability is the optimal strategy to maximize
the expected delivery probability. Given the meeting
probability Mi,j ,Mi,k, . . . of node i and nodes j, k, . . .
that i will probably meet with in time-slot Tr and the
delivery probabilities Pj,d,K−1,Tr−1, Pk,d,K−1,Tr−1, . . . of
nodes j, k, . . ., sorted in a decreasing order, the maximum
probability that the copy will be forwarded to one of nodes
j, k, . . . in time-slot Tr and then be delivered, is:
P (delivered|forwarded at Tr) × P (forwarded at Tr) =
P (delivered and forwarded at Tr) = Mi,j ×
Pi,d,K−1,Tr−1 + (1−Mi,j)×Mi,k × Pk,d,K−1,Tr−1 + . . .

The expected optimal delivery probability Pi,d,K,Tr equals
the sum of: (1) the probability that the current node encounters
the destination at Tr; (2) the probability that the copy will
be forwarded to some node other than the destination at
time-slot Tr, and then be delivered, as shown above; (3)
Pi,d,K,Tr−1 ×M ′i,N , where Pi,d,K,Tr−1 is the delivery prob-
ability if the message is not forwarded at time-slot Tr, and
M ′i,N = 1 −Mi,d − (1 −Mi,d) ×Mi,j − (1 −Mi,d) × (1 −
Mi,j) ×Mi,k − . . . is the probability that the message is not
forwarded at a time-slot.
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Algorithm 1 Calculation of Pi,d,K,Tr

1: Pi,d,K,Tr := Mi,d

2: M ′i,N := 1−Mi,d

3: for each (node j, j 6= i and j 6= d) {
4: Pi,j = 1− (1−Pi,d,K−1,Tr−1)× (1−Pj,d,K−1,Tr−1)
5: }
6: Q := a priority queue of j in decreasing order of Pi,j

7: while (j :=dequeue(Q) and Pi,j > Pi,d,K,Tr−1) {
8: Pi,d,K,Tr

:= Pi,d,K,Tr
+M ′i,N ×Mi,j × Pi,j

9: M ′i,N := M ′i,N −M ′i,N ×Mi,j

10: }
11: Pi,d,K,Tr := Pi,d,K,Tr +M ′i,N × Pi,d,K,Tr−1

Algorithm 1 shows the calculation of a single Pi,d,K,Tr

using the backward induction method. In line 7, the while
loop stops when queue Q is empty. Using this algorithm, we
calculate Pi,d,K,Tr

for all K from 1 to H (when K = 0,
Pi,d,0,Tr

is calculated by Equation 1) and then for all Tr from
1 to Tmax (when Tr = 0, Pi,d,K,0 = Pi,d,0,0).

IV. REMOVING THE TIME DIMENSION (OOF-)

In OOF, each node needs to calculate a four dimensional
table for the delivery probabilities Pi,d,K,Tr

. Clearly, the size
of the table is proportional to the number (Tmax) of total
time-slots, which depends on the maximum time-to-live of
the messages and the length of each time-slot. For example,
In our simulations using the Cambridge Haggle traces, we
set Tmax = 100. This section presents another protocol,
called OOF-, which provides a trade-off between a smaller
computation and storage requirement (1/Tmax of that of OOF)
and a slightly degraded performance in particular situations.

In OOF-, we define a new forwarding metric, expected
delay (Di,d,K), which is only parameterized by the remaining
hop-count. An expected delay Di,d,K denotes the expected
time it takes to deliver a message with a remaining hop-
count K. Expected delay is also a comprehensive forwarding
metric, which considers the joint expected delay of all possible
descendant forwarders in the forwarding tree. Assuming an
exponentially distributed (memoryless) inter-contact time, the
message forwarding condition from node i to node j is:

1
Di,d,K

> 1
Di,d,K−1

+ 1
Dj,d,K−1

.

A. Deriving Di,d,K

The 1-hop (directly) expected delivery delay Di,d,0 of a
message in node i is simply Ii,d/2, where Ii,j is the mean
inter-meeting time between nodes i and j. We assume that
inter-meeting times are exponentially distributed: if two copies
have expected delays D1 and D2, respectively, then their joint
expected delay equals 1

1
D1

+ 1
D2

.
Suppose that under the optimal forwarding strategy, N (d ∈

N ) is a set of nodes that, when encountering any j ∈ N , node
i will forward the message to j. Let (1) Wi,N be the expected
waiting time for i to encounter the first node in N , i.e., Wi,N

is the expected waiting time for i to forward the message; let
(2) pi,j be the probability that j is the first node to encounter

Algorithm 2 Calculation of Di,d,K

1: Wi,N := Ii,d/2
2: Di,d,K :=∞
3:

∑
:= 0

4: Q := a priority queue of j in decreasing order of 1
Dj,d,K−1

5: while (j :=dequeue(Q) and Di,d,K > Wi,N × (1 +
∑

))
{

6: Di,d,K := Wi,N × (1 +
∑

)
7: Wi,N := 1

1
Wi,N

+ 2
Ii,j

8:
∑

:=
∑

+ 2
Ii,j×( 1

Di,d,K−1
+ 1

Dj,d,K−1
)

9: }

i among all nodes in N , and
∑

j∈N pi,j = 1. Assuming the
exponential encountering time, we have Wi,N = 1∑

j∈N
2

Ii,j

,

and pi,j =
pi,j∑

j∈N pi,j
=

1
Ii,j∑

k∈N
1

Ii,k

=
2Wi,N

Ii,j
.

The expected delay Di,d,K of a message in node i is the sum
of: (1) Wi,N multiplied by the probability pi,d that i encounters
d first; (2) the joint expected delay Wi,N + 1

1
Di,d,K−1

+ 1
Dj,d,K−1

of the two new copies in i and j, multiplied by the probability
pi,j that i encounters j (j ∈ N and j 6= d) first. Therefore,
Di,d,K can be derived as follows: Di,d,K =

pi,d ×Wi,N +
∑

j∈N\{d}

pi,j × (Wi,N +
1

1
Di,d,K−1

+ 1
Dj,d,K−1

)

= Wi,N +
∑

j∈N\{d}

pi,j ×
1

1
Di,d,K−1

+ 1
Dj,d,K−1

= Wi,N +
∑

j∈N\{d}

2Wi,N

Ii,j
× 1

1
Di,d,K−1

+ 1
Dj,d,K−1

= Wi,N × (1 +
∑

j∈N\{d}

2

Ii,j × ( 1
Di,d,K−1

+ 1
Dj,d,K−1

)
).

Algorithm 2 shows the calculation of Di,d,K using the above
equation. The set N of candidate receiver nodes under the
optimal forwarding strategy is constructed by adding each
node j into N in the decreasing order of 1

Dj,d,K−1
, until Di,d,K

reaches its minimum value.

B. Comparing Di,d,K to Pi,d,K,Tr

The expected delay in OOF- ignores the residual time-to-
live Tr, which may introduce incorrect forwarding decisions.
In this subsection, we evaluate the percentage of incorrect
decisions that OOF- makes by comparing the decisions made
by OOF and OOF-. Specifically, we compare the percentage of
inconsistency between Pi,d,K,Tr

> 1−(1−Pi,d,K−1,Tr
)×(1−

Pj,d,K−1,Tr
) and 1

Di,d,K
> 1

Di,d,K−1
+ 1

Dj,d,K−1
for all possible

permutations of node i, node j, destination d, remaining hop-
count K, and residual time-to-live Tr.

We use the inter-meeting times in the UMassDieselNet trace
[6], [8] and the NUS trace [5], respectively, to calculate the
routing tables for OOF and OOF-. The percentage of incon-
sistency in forwarding decisions is shown in Figure 2. The
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Fig. 2. Percentage of incorrect OOF- forwarding decisions compared to
OOF.

TABLE II
SIMULATION SETTINGS IN THE UMASSDIESELNET TRACE.

parameter name default range
number of nodes (N ) 92

tickets in spray-and-wait (L) 10
initial hop-count (K) 3

message time-to-live (TTL) 5 days 1∼7 days
length of time-slot (U ) 5 minute

simulation time 5 days 1∼7 days
message rate (total messages) 10N2 2∼20N2

percentage of inconsistent forwarding decisions is generally
below 10%, except when the residual time-to-live is less than
10 hours in (a) or less than two hours in (b), where it can be as
large as 50%. The reason for this inconsistency is because, as
the residual time-to-live becomes smaller, OOF is more ready
to spread copies. On the other hand, OOF- is as conservative
as usual for being unaware of the upcoming deadline.

V. EVALUATION

We evaluate the proposed protocols, OOF and OOF-, against
other forwarding protocols using the UMassDieselNet trace
and four Cambridge Haggle traces [4]. The routing protocols
implemented to compare to OOF and OOF- were listed in
Section II-C. Since all of the protocols that we implement
aim to compare different delivery probability metrics, other
optimizations that have orthogonal effects on the performance
of these protocols are not implemented. These optimizations
can be added to all of our implemented algorithms and they are
expected to improve the routing performance of all of them.
They may include buffer management [8], estimation of global
message delivery probability [12] and social centrality of the
nodes [18], the use of position information [19], as well as
acknowledgment mechanism [8], [12]. Note that without an
acknowledgment mechanism, even though some copies of a
message may have been delivered, the other copies of the same
message may still be forwarded in the network. We measure
the delay and the number of forwardings (the total number of
copies of a message in the network) using their averages on
the delivered messages only.

A. UMassDieselNet Trace

In the UMassDieselNet bus system consisting of 40 buses
[6], [8], the bus-to-bus contacts (the durations of which are
relatively short) are logged. Our experiments are performed on
traces collected over 55 days during the Spring 2006 semester,
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Fig. 3. Delivery rate, delay, and number of forwardings versus message rate
and message time-to-live in UMassDieselNet trace.

with weekends, Spring break, and holidays removed due to
reduced schedules. The bus system serves approximately ten
routes. There are multiple shifts serving each of these routes.
Shifts are further divided into morning (AM), midday (MID),
afternoon (PM), and evening (EVE) sub-shifts. Drivers choose
buses at random to run the AM sub-shifts. At the end of the
AM sub-shift, the bus is often handed over to another driver
to operate the next sub-shift on the same route or on another
route. Unfortunately, the all-bus-pairs contacts provided in the
original traces show no discernible contact pattern among the
nodes. We performed the data process in [20] to generate the
contacts at a sub-shift level, which exhibit periodic behavior.
This process translates the bus-to-bus contacts into contacts
between sub-shifts.

The settings of the UMassDieselNet trace simulation are
shown in Table II. We further process the traces such that all
communication links between the nodes become bidirectional.
In these traces, the average number of contacts per sub-
shift per day is 8.5, and the contact duration is 12 seconds
on average. We restrict the maximum number of messages
forwarded in each contact opportunity to a maximum of 100
messages per second of contact duration.

As shown in Figure 3(a), OOF and OOF- have the same
delivery rate, which is around 20% higher than those of
MaxProp∗ and Delegation and 60% higher than that of Spary-
and-wait. Epidemic, which effectively floods the network with
message copies, degrades most significantly as the message
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TABLE III
STATISTICS IN FOUR CAMBRIDGE HAGGLE TRACES.

Trace Contacts Length(D) Routing External
(d.h:m.s) nodes nodes

Cambridge 6732 6.1:34.2 12 223
Infocom 28216 2.22:52.56 41 264

Infocom2006 227657 3.21:43.39 98 4519
Content 41587 23.19:50.18 54 11418

TABLE IV
SIMULATION SETTINGS IN THE CAMBRIDGE HAGGLE TRACES.

parameter name default range
tickets in spray-and-wait (L) 8

initial hop-count (K) 3
message time-to-live (TTL) 1

10
D ∼ D

length of time-slot (U ) 1
100

D
number of messages 30,000

rate increases. The effect of the message rate on other pro-
tocols with hop-count limitations is minor. Figure ?? shows
that OOF and OOF- keep the same delivery rate improvement
over the other protocols as the message time-to-live varies.

Firgures 3(c) and 3(d) show that all protocols, except
Epidemic, have small per-message forwarding numbers.

Firgures 3(e) and 3(f) show that OOF and OOF- also have
the smallest delay among the compared protocols, although,
the improvement is not significant.

B. Cambridge Haggle Trace.

The Cambridge Haggle trace [4] data includes a total of
five traces of Bluetooth device connections by people carrying
mobile devices (iMotes) for a number of days. These traces are
collected by different groups of people in office environments,
conference environments, and city environments, respectively.
Bluetooth contacts were classified into two groups: iMotes’
sightings of other iMotes are classified as internal contacts,
while sightings of other types of Bluetooth devices are called
external contacts. Since there is no record of contact between
non-iMotes, we only use the iMotes as routing nodes. Other
nodes, or external nodes, can only be assigned as destinations.

Table III shows some of the statistics in the four traces we
use. In these traces, we assume infinite forwarding bandwidth
and storage in each node. Simulation settings in these four
traces are shown in Table IV. We did not include the Intel trace
because the trace contains only 9 nodes, where all protocols
can flood the network. Each simulation result is averaged over
30,000 randomly generated messages.

Delivery rates of the protocols are compared in Figures 4(a),
4(b), 4(c), and 4(d). From these results, we can see that
the compared improvements of OOF and OOF-, in terms of
delivery rate, are (1) more significant in the environments
where regularity in mobility is more observable, such as
campus (Figure 4(a)) and city environments (Figure 4(d)), and
(2) less significant in the environments with relatively random
mobility, such as conference (Figures 4(b) and 4(c)). In
general, the results show that OOF and OOF- have comparable
performances in all cases. In Figure 4(c), OOF and OOF- have
a 60% of improvement over MaxProp∗, and in Figure 4(d),
OOF and OOF- show a 100%+ improvement over Delegation.
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Fig. 4. Delivery rate versus message time-to-live in the Cambridge Haggle
trace.

The number of forwardings of all protocols are compared
in Figures 5(a), 5(b), 5(c), and 5(d). The results of Epidemic
are removed from Figures5(b), 5(c), and 5(d) since they are
much larger than those of the other protocols. The results in
all of these figures show that Spray-and-wait, which is socially
oblivious, has the largest forwarding number and the smallest
delivery rate at the same time. The reason that Delegation
can have a very low delivery rate is probably due to its over
conservative forwarding policy, as can be found in Figure 5(d).
From Figures 5(b) and 5(c), we found that OOF, compared
with OOF-, can automatically become more conservative in
forwarding as time-to-live increases.

VI. CONCLUSION

In this paper, we investigated several forwarding protocols,
which maximize the expected delivery rate and minimize
the expected delay, while satisfying the constraint on the
number of forwardings per message. We proposed the optimal
opportunistic forwarding (OOF) protocol and a simplification,
the OOF- protocol, which make optimal forwarding decisions
by modeling each message forwarding as an optimal stopping
rule problem. We implemented OOF and OOF-, as well as
several other protocols, and performed trace-driven evaluations
on several traces.

Evaluation results verify that, compared with other algo-
rithms, OOF and OOF- have higher delivery rates and smaller
delays under a bounded number of per message forwardings.
In terms of delivery rate, OOF and OOF- perform better in
the environments with higher mobility regularities, where they
can be up to 60% better than MaxProp∗ and 100% better than
Delegation.

Limitations: the proposed protocols suffer from several
limitations. (1) Like all of the other routing algorithms in
delay tolerant networks that do not rely on infrastructure,
the proposed algorithms are unsuitable for a large amount of
time-critical applications. (2) The proposed protocols assume
regularities in the inter-meeting times to accurately predict
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delivery probabilities or delays. In networks where there is
not much regularity in node mobility, improvement in routing
performance becomes less significant. However, as can be
found in our simulation results, our algorithms show the best
performance improvement as the performances of all of the
routing protocols degrade due to the lack of regularity in
mobility. (3) The proposed protocols, in their current forms,
demand relatively large amounts of computation and storage,
which limits their application in larger networks. In practical
use, different methods might need to attack the computation
and storage problem such as: (a) using only the most socially
active nodes as routing nodes, (b) using a compact table for
delivery probabilities, which only stores the largest entries for
each destination, or (c) using dynamic time-slots, e.g., we can
set some several hours during the night as a single time-slot,
when connectivity among the network hardly changes.
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Fig. 5. Number of forwarding versus message time-to-live in the Cambridge
Haggle trace.
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